

Traditional breeding goes genomic

SLU

Mutations

Random mitakes during DNA-duplication Mutation = "Single Nucleotide Polymorphism" (SNP)

Carrier frequencies

sample of the population

SLU When breeding and selection goes wrong Random breeding selection 34.1% 34.1% 2,3% 2 3% 13.6% 13.6%

SLU **Polysaccharide Storage Myopathy –** PSSM, Type 1 & Type 2

Type 2:

Unknown gene

92% of warmbloods with PSSM

Abnormal gaits and muscle pain

Normal levels of muscle glycogen

Less likely to have tyed-up

Type 1:

- Increased muscle glycogen conc and abnormal polysaccharide accumulation in skeletal muscle
- Glycogen syntase (GS) encoded by the gene GYS1, autosomal dominant or codominant
- Higher GS activity result in stiffness and limbness
- Present in more than 20 breeds
 - Most common in draft breeds of continental European breeds
- Low allele frequencies in British drafts 8% of warmbloods carry the mutation
- · Rare to none existing in light breeds as xx and

ox

SLU

Microphthalmia & anophthalmia

• One or both eyes missing or undeveloped

μ-2σ μ-σ μ μ+σ μ+2σ

- · Bi- or unilateral
- · Probably autosomal recessive
- Many candidate genes
- · Could be different mutations in different families

Strong

Rapid breeding gain

Inbreeding

Halper J et al., 2011. Pak Vet J, 31(1): 1-8

Degenerative suspensory ligament desmitis (DSLD)

SLU

= Equine Systemic Proteoglycan Accumulation (ESPA) J. Halper (ed.), Progress in Heritable Soft Connective Tissue Diseases, Advances in Experimental Medicine 231 and Biology 802

Ehler-Danlos syndrome in humans Overly flexible joints THE BEIGHTON SCORE Stretchy skin Fragile skin • EDS fetuses of asymptomatic mothers affected by premature birth, still birth and abortion

	_		_		_				
Ehle	er-D)an	los	syr	ndrom	le			
Sjukdom	Gen	Lokalisa- tion	Genprodukt (protein)	Ärftlig- het	Sjukdom	Gen	Lokalisa- tion	Genprodukt (protein)	Ärftlig het
Klassisk (cEDS)	COL5A1 COL5A2 COL1A1	9q34.3 2q32.2 17q21.33	kollagen typ V kollagen typ V kollagen typ I	AD	Brittle Cornea Syndrom (BCS)	ZNF469 PRDM5	16q24 4q27	ZNF469 PRDM5	AR
Klassisk-liknande (cIEDS)	TNXB	6p21.33- p21.32	tenascin XB	AR	Spondylodysplastic (spEDS)	B4GALT7 B3GALT6	5q35.3 1p36.33	Galactosyl transferas I Galactosyl	AR
Cardiac-valvular (cvEDS)	COL1A2	7q21.3	kollagen typ I	AR		SLC39A13	11p11.2	transferas II ZIP13	
Vaskulär (vEDS)	COL3A1 COL1A1	2q32.2 17q21.33	kollagen typ III kollagen typ I	AD	Musculocontractural (mcEDS)	CHST14 DSE	15q15.1 6q22.1	Dermatan-4 sulfotransferas-1 Dermatan sulfat	AR
Arthrochalasia (aEDS)	COL1A1 COL1A2	17q21.23 7q21.3	kollagen typ I kollagen typ I	AD				epimeras 1	
Dermatosparaxis (dEDS)	ADAMTS2	5q35.3	ADAMTS-2	AR	Myopathic (mEDS)	COL12A1	6q13-q14	Kollagen typ XII	AD eller AR
Kyfoskoliosis (kEDS)	PLOD1 FKBP14	1p36.22	Lysylhydroxylas 1 FKBP22	AR	Periodontal (pEDS)	C1R C1S	12p13.31	C1r C1s	AD

J. SLU

The WFFS gene

- Autosomal recessive
- PLOD1 (lysyl hydroxylase 1)
- Cannot produce collagen (connective tissue)
- Old mutation

Carrier fre Veterinary Genet	-		5 A
Breed	Number of tested horses	WFFS carriers	
KWPN	104	7%	
Hannoveraner	76	20%	
Holsteiner	42	7%	
Oldenburger	22	9%	
Rheiniand Pfaiz-Saar	Ĵ	1170	
SWB	ī	0%	
Trakhener	64	2%	
Westphaler	7	140/	
Totalt	340	9%	

Risk of WFFS cases in a population

Frequency of carriers determine the potential number of affected foals

Number of generations needed to reduce

the frequency of a lethal mutation

Original allele frequency	New allele frequency	Number of generations
	0,25	2
0,5	0,1	8
	0,01	98
	0,05	10
0,1	0,01	90
	0,001	990
	0,005	100
0,01	0,001	900
	0,0001	9900

SLU

An undesirable mutation can quickly spread in the population

- If a well used stallion is carrier
- If a carrier has positive characteristics
- At a low frequency, the mutation is hidden in the population and is discovered when the frequency increases
- Unfavourable mutations are usually lost

Strategies in breeding

To consider:

SLU

- How large is the population?
- How large is the effective population
- size?
 How large is the genetic variation in the
- population?
- Is the population inbred?How strong is the selection, i.e. how large
- proportion of the population is used in breeding?
- Is the studbook closed or open?

- There is a risk to decrease the genetic variation for other traits if all carriers are excluded from breeding
- WFFS-status is one of many characteristics to consider when selecting breeding individuals
- Never ever cross two carriers!
- Prioritize noncarriers in further breeding from a carrier parent

Test and inform!

